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This work is a generalization of Lighthill’s acoustic analogy in which it is proved that
the jet noise problem can be modelled exactly by equivalent sources near a vortex
sheet. Mani’s work has shown that this type of scheme can agree well with experiment.
This theory justifies Mani’s general procedure but gives in addition the equivalent
sources needed for an exact analogy. Each moving fluid particle supports a quadrupole
P | whose strength per unit mass is given by Lighthill’s stress tensor and the sound radiates
o 1,4 asifit were adjacent to a laminar instability free vortex sheet. Though we show that the
— sound is determined in terms of the turbulence stress tensor, sound is also generated
< > by the flow’s instability waves as they grow into turbulence, and this sound appears as an
> C exponentially growing precursor of the main field. Some well known features of the
@) b mean flow acoustic interaction issue are an immediate consequence of the theory. We
e examine the case of a round jet in some detail and concentrate on an aspect that we
Q) think is new. When the mean jet density is much lower than that of its environment then
O the mean flow-acoustic interaction results in a considerable amplification of the
=w quadrupole field, and the intensity of its sound can scale on an unusually low power of

jetspeed. We show that a fourth power law is possible and even a second power law when
the density difference is large enough. This may be part of the ‘excess noise’ problem
in which the sound of engine-produced hot jets is often insensitive to changes in jet speed
at low exhaust power.
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322 A.P. DOWLING AND OTHERS

1. INTRODUCTION

Since the experimental work of Lush (1971) there has been no doubt that the interaction of
aerodynamic sound with the moving flow whose mixing provided its source is an important
element of the jet noise problem. Many of the features described by Ribner (1964) as refraction
of sound by gradients in mean flow and refractive index were confirmed in Lush’s work, so
putting experimental observation and intuitive reasoning considerably in the lead of any formal
theory.

Of course it was always evident that some refraction of sound passing through an inhomo-
geneous flow was inevitable, and Lighthill (1952) argued that such effects should be treated
separately after the sound generation problem had first been solved. Elementary jet refraction
problems had been worked by Moretti & Slutsky (1959), Gottlieb (1960) and Slutsky & Tamagno
(1961), each with evidence that flow could deform any sound wave passing through it. Only
Lighthill’s (1952) theory could treat the sound generation problem exactly, but that theory was
incapable of explicitly displaying the refractive effects. Theories that do bring out the flow
acoustic interaction explicitly are invariably approximate and difficult enough to handle for the
consequences of the necessary approximations to remain obscure. For example, Gottlieb’s work
concerned a plane vortex sheet modelling of a jet, while Moretti & Slutsky described high
frequency rays propagating through a laminar flow. Zones of silence arise in such flows and the
upstream deflection of an initially downstream propagating ray is impossible. But some such
upstream deflection is quite probable for high frequency waves in an actual jet as concentrated
eddies can bend rays in a different and more extreme manner from that found in parallel laminar
flows (cf. Dowling 1975; Howe 1976; Broadbent 1977).

Phillips (1960) was the first to attempt an exact description of sound generation by turbulent
shear layers in which the flow interaction was made explicit. That work was extended by Pao
(1969) and Lilley (19%71). Primarily aimed at the supersonic problem, it left obscure the important
issues that Mani (1976) emphasized; the Lighthill analogy did not seem to provide even an
approximate low speed estimate of the full convection effects on the sound generated by sources
shrouded in a mean jet flow. But Mani’s analysis, the results of which seem to be so consistent
with experiment in precisely those areas where Lush had pointed to deficiencies of the Lighthill
theory, was based only on an intuitive modelling of the flow, some support for the model being
deduced from a theory of Lilley’s (19774). The obvious logical weakness in Mani’s experimentally
effective model led one to suspect that a more fundamental justification is possible; that is
essentially what this paper is about.

A substantial amount of recent theoretical work on the interaction between the mean flow,
the turbulence, and the acoustic field is based on the idea that the unsteady stream can be thought
of as a weak perturbation to a parallel laminar inviscid flow with a velocity and density profile
equal to that of the mean jet. That motion is of course governed by the compressible version of the
Rayleigh equation, whose inhomogeneous form is the Lilley (1974) equation. It was this equation
on which Mani argued the reasonableness of his own vortex sheet modelling, though in doing so
he had to discard singular source terms that would actually dominate in any physical realization
of that model. It was through this equation also that Mani (1976) argued the existence of efficient
monopoles arising from mean density gradients in the jet, an argument that is now known to be
incorrect (cf. Kempton 1976) and which was in fact an erroneous application of Lilley’s equation
(cf. Morfey & Tester 1976). Misapplications of the theory can be expected because the equation
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SOUND PRODUCTION IN A MOVING STREAM 323

is not easy to handle; it is a third order differential equation with variable coefficients, solutions
to which have to be sought numerically in all but the simplest of geometries.

There are difficulties of principle also. Non-trivial solutions of the homogeneous equation exist,
indeed they are the ones so extensively studied in examining the stability of laminar flows, and
because these do not depend on the ‘right hand side’ of Lilley’s equation for their existence, that
right hand side cannot claim to be the source; it is certainly not their source. Another difficulty
of principle concerns the idea of evaluating the field as a weak perturbation about a laminar flow
with the mean jet profile. Real tubulent jets are highly disturbed, the instantaneous velocity
vector deviating from the axial direction by more than }r quite frequently (Acton 1976). Fluctua-
tions in a low Mach number jet are on the same time scale as the sound they produce, during
which a sound wave travels many shear layer thicknesses. Any single sound wave therefore inter-
acts with a geometrically contorted shear layer, quite unlike the mean shear layer, and the inter-
action is complete long before the shear layer has wobbled enough to resemble the mean. It might
be thought that the mean effect of acoustic—shear layer interaction could be approximated to by
a single passage of sound through a ‘mean’ shear layer. But that too seems unlikely, at least
at high frequencies, because, for example, of the existence of shadow zones in the laminar shear
layer problem that would be penetrated by rays in an actual case. In those cases, if a solution via
the Lilley equation is correct, the Green functions of that equation cannot represent the real
field very accurately and careful attention must be given to the detailed evaluation of the then
necessarily extensive ‘source terms’. The equation is difficult enough to handle and the instability
issue so intractable that definite results are hard to obtain. Progress is not impossible though, as
Morfey & Tester’s (19776) work testifies. This difficulty of quantifying errors is even more pro-
nounced in Mani’s approach because he has no recipe for deducing what the equivalent sources
should be.

Lilley’s equation and the aero-acoustic analogy it provides is attracting great attention and is
formally exact so that it would be wrong to concentrate on the difficulty of obtaining and inter-
preting the results. This laminar flow model is probably the best that is available, and it does
account for the major effects of refraction remarkably well. The existence of quiet zones is an
obvious element in which the qualitative similarity is good and away from the shadow zones there
is quantitative agreement.

Now in many respects Mani’s (1976) particular vortex sheet modelling of the jet problem
seems as good as that more laboriously obtained via Lilley’s equation (Morris 1974; Morfey &
Tester 1976) in which the jet flow is given the mean velocity and temperature profile. Add to this
the observation that the mean profile is no more relevant than any other since no single sound
wave ever interacts with it and one is led to the thought that in those areas where the laminar
flow theories are successful, details of the profile are actually unimportant. In that case, the best
model will be that which is most easily handled. It is difficult to imagine any simpler model than
avortex sheet. Itis thisanalytical tractability that might give Mani’s model its edge; its weakness
lies in its inability to define the sources. Because it is not based on an exact analogy it cannot
provide a convincing procedure for handling the more subtle and difficult problems such as
vortex sheet instability and the apparent singularities at the Mach wave conditions encountered
at supersonic jet speeds.

In this paper we develop an exact analogy between a vortex sheet simulation of a jet flow and
the real thing, and show that the equivalent source required in the analogy is a convected quadru-
pole distribution, each quadrupole having a strength determined by Lighthill’s stress tensor

25-2
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324 A.P.DOWLING AND OTHERS

measured relative to a uniformly moving jet stream. This result is essentially that already given
by Ffowcs Williams (1974) but we now give a much more rigorous and convincing derivation of
that theory.

Our vortex sheet extension of Lighthill’s acoustic analogy contains elements that arrive at the
far field before any wave could have covered the distance at the uniform propagation speeds of
the model problem. But then the real wave is nof travelling at these uniform speeds; it is riding
on the back of turbulent eddies and refracting through regions of inhomogeneous refractive
index. The exactly analogous model flow in which these real effects are suppressed must have
a quasi-non-physical element through which they are restored. In this respect our extension is not
different from Lighthill’s model where wave elements travel at a strictly uniform speed. Sound
travelling a unit length through a real turbulent flow of characteristic Mach number M, can
be advanced, or retarded, a distance of order M by these convective effects, and similar argu-
ments hold for variations in the speed of sound (cf. Ffowces Williams 1977%). Errors of order MD
in the wave’s position where D is the scale of the turbulent flow, are thus to be expected in all
analogies of this type and ours is no exception. However, our exact analogy has an added feature
brought about by a requirement that the linear model should share the real flow’s finite level of
acoustic activity. Any instability of the model flow must therefore be avoided, and this step also
causes waves in the model to precede any that would exist if the linear model flow were actually to
be realized in practice. We argue that this is entirely reasonable, for the sound producing
disturbance would also provoke any real shear layer to support rapidly growing waves that later
break into turbulence. Any theory that attributes the source of that sound to the turbulence
must therefore allow for the sound’s prior existence. In our model it is as if the source-induced
vortex sheet instability is exactly the opposite of a pre-existing instability wave that is growing
on the shear layer in anticipation of the wave it is eventually to cancel. The pre-existing wave
has an exponential growth rate so that the anticipatory sound induced by that wave is significant
only within a distance of the actual wave front that sound travels during the build up, a build up
that persists over the characteristic time scale of the turbulence. This is also, necessarily, the
characteristic time scale of the dominant flow instabilities which both feed the turbulence and
determine the structure of the Green function for the model. Because in low Mach number flows
this is also the characteristic time scale of the sound, the wave front is thus diffused forwards
a distance of about one acoustic wavelength. The sound field therefore furnishes in this way
a record of how the turbulence grew exponentially out of the instability waves; the turbulence
provides the dominant source while the contribution made by instability waves growing into
turbulence necessarily precedes it. The analogy, which we emphasize to be exact, allows both
these elements to be specified through Lighthill’s stress tensor and the bounded Green function
for a vortex sheet simulation of the flow.

We first develop the theory in a general way and illustrate its application for a cylindrical jet
of circular cross section and then derive from the theory some important known results for an
acoustically compact jet flow. We contend that this theory provides a justification for the correct-
ness of Mani’s (1976) vortex sheet modelling. The sources needed for that model are however
quite different from those used by Mani, which in any case are now known to be incorrect, at
least in so far as they misrepresent the effects of mean density gradients. It is our belief that this
theory allows all the power and simplicity of Lighthill’s analogy to be applied to real jet flows
in which there are significant mean flow acoustic interactions; these interactions are made explicit
in an analytically tractable way.
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SOUND PRODUCTION IN A MOVING STREAM 325

We also give some new results for the acoustically compact jet of low density. There it seems
that sound will scale on very low powers of jet speed. We think that this may well be part of the
excess noise problem where sound is known not to conform with the simple scaling of Lighthill’s
free quadrupole model.

2. A GENERALIZATION OF LIGHTHILL’S ACOUSTIC ANALOGY
Our development is based on Lighthill’s (1952) equation

o 0% Oy,
T W By 0y (2.4)
where Tij = provs+p— g 055 Py = (P —1po) 85— €35 (2.2)
is the turbulence stress tensor, v; the fluid velocity, p the pressure, p the density, p’ = (p —p,) and
¢;; the viscous stress tensor. The suffix zero implies a constant reference value which can actually
be chosen arbitrarily. It is well known that this equation is a direct consequence of the continuity
and momentum equations ap 2
ar ay (p v;) =0,

(2.3)

d d
ar(Po0) + gy (T 4 p'0) = 0.

Lighthill’s formulation of the aerodynamm sound problem is most appropriate when the
sound generated by the flow propagates through a medium which is homogeneous and at rest
relative to the observer. However, in many important situations it is often more realistic to regard
the undisturbed medium or a particular part of that medium as being in uniform motion. For
this we introduce a new coordinate system ¥’ which moves in the y;-direction with the uniform
velocity U = (U, 0, 0).

Yi =y~ U =y, — Uy18;. (2.4)

It follows from the Galilean invariance of the conservation principles embodied in equation (2.1)
that 0%, 0%, 0T,

or?|,, ~dgn o2~ dy, oy ay, (2.5)

where p; = (p—p,) and T3 = pvyvj+py; — 2 p16y; (2.6)

is Lighthill’s stress tensor expressed in terms of the relative velocity v} = v, — U, d;,; we have
introduced for later use different reference values for the speed of sound and density. We find it
more convenient to work in terms of the stationary coordinate system ¥, in which frame equation

2.5) is ’ ’
®9) Dip; _ 201 _ T, @
Dr2 " oy? ayz- oy, ’
where Dr =3 U1 o7 (2.8)
and the continuity and momentum equations are
Dlp, 0 ’
W""@;(P%) =0 o

1 (pvq) +a (T’LJ +clp13w) = 0.


http://rsta.royalsocietypublishing.org/

'\

o

A \
=\
L A

/|
AL

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

P\
N \
AL A

N

y \

/7

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

326 A.P. DOWLING AND OTHERS

Suppose that the fluid occupies all space exterior to a surface 2'(7), which may consist of several
closed surfaces. For example 2'(7) may be the surfaces of several moving bodies. The motion of
this surface and/or the heat applied through it generate the jet flow. We choose a region v,(7)
such that this surface and most of the energetic motion of the fluid are within »,(7), while most of
the undisturbed fluid lies in v¢(7), the unbounded region outside v,(7). We also suppose that
these two regions v, and v, are separated by a surface S(r) which moves with the real flow,
a situation illustrated in figure 1.

foreign bodies of volume V bounded by the surface 2

Yo

U, = ceM
_ 2 2 —_>
g<0§H=1,H=0and{a— ID’} t=0 G4

o2 D2 T 7

surface § moves with the flow Vo

—_ a2 l aZ
>0;H=0, H=1and {— — = —
¢ an {ay§ 63672}

Gl = —0(x—y,t—7).

X field point (, ¢)

Ficure 1. A diagram illustrating the geometry and constraints on the Green function.

Let g(y, 7) be a solution of o o
240,>=0 (2.10)
or 'Oy,

then, g(y,7) = constant is the equation of a surface that moves with the fluid and therefore

consists of the same fluid particles at all times. It is always possible to choose this solution so that

it passes through any prescribed surface at some fixed initial instant. We can therefore normalize
gsothatg = 0 corresponds to §(7) and so that g is negative in v, and positive in v,. The Heaviside
function H(g) is consequently unity in the region v, and zero in »;.

Since g is zero on the surface S (7) which separates v, from its surrounding v,, 0H/0y, is a vector
perpendicular to S, positive in the direction leading from »; into the exterior unbounded fluid

f O gy, 7) ddydr — f dr f n, K dS(r)
o 0Y; ()

for any function K(y,7), where n is in the direction shown in figure 1.

We shall now obtain an exact formula for the density fluctuations which incorporates the idea
that if for a sufficiently long time the mean velocity of the fluid in v, is negligible while that in »;
does not differ substantially from some constant reference value U; which is predominantly in

in v, and
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SOUND PRODUCTION IN A MOVING STREAM 327

the y;-direction, it is reasonable to use equations (2.1) and (2.7) respectively to describe their
aeroacoustics. Of course, to avoid any extensive linear inhomogeneity of the wave equation we
must then choose ¢, and p, to be characteristic values of the speed of sound and density in v,, and
¢, and p; to be the corresponding values in ;. We shall deal exclusively with the exact viscous
nonlinear equation of fluid motion and recognize by common observation that the solution is
limited by several constraints. First, the jet flow must be driven by an externally applied force
distribution acting through the surface 2. This force is non-zero only for a finite time, which
ensures that both the mean flow and sound field are zero if any one of the four space-time co-
ordinates tends to infinity. Secondly waves will tend to travel towards infinity from the neigh-
bourhood of the surfaces 2 driving the mean flow.
We choose to work with a reciprocal} Green function

G'(y,7|%,t) = H(y,7) Gi(y,7| %, t) + H(y,T) Gi(y, 7| %, 1)

that has incoming wave behaviour in the variables y and 7, decays as 7 becomes large and positive,
and is consistent with the equations

020* 102G}
—(02GI 1 D2

His written for 1 —Hi.e. H(g) = 1—H(g) = H(—g).

At this point G* is otherwise unrestricted. Notice that we require a weak form of causality:
G- 0as 7->00; we do not insist that G* satisfy the strict causality conditions G* = D, G'/Dr = 0
fort < 7 that are usually imposed on a reciprocal Green function. Indeed it is known ( Jones 1973)
that in certain model problems, a generalized function bounded at infinity is incompatible with
strict causality. We use these equations to determine Hp’ which is a function defined over all
space; it is equal to the density fluctuation p —p, in v, and zero elsewhere.

Hp' = f pHY (%~ 9,1 —7) dSy dr

(026 106Gy
=-LHp{ay 5 aTz}dyd (2.13)

The result follows from equation (2.11) and the definition of the delta function. The integra-
tion ranges over all the four dimensional (y,7) space. p’ is an outgoing and G} an incoming
acoustic wave at |y| infinity so that equation (2.13) may be integrated by parts twice to give

[ Gi(e
Hp' = f 0{672 i 2} (Hp') &y dr, (2.14)

(;2
an equation that may otherwise be obtained by noting that the real density perturbation, p’,
vanishes at (|y|, |7|) infinity.

It is a straightforward matter to develop equation (2.1) by multiplication with H, the transfer
of H through the differential operators and the use of equations (2.3), into the form

@ L . OHT) d aH) 2 aH)
{672 °6y}(Hp)”W ayy(p”ayz ’ °OT(‘ay (3.15)

1 The reciprocal Green function is the usual Green function in reverse time, G'(y, 7|%, t) = G(y, —7|%, —¢).
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328 A.P.DOWLING AND OTHERS

which is essentially eqn (2.8) of Ffowcs Williams & Hawkings’s (1969) paper. This equation can
now be used in (2.14) to give

¥(HT;) 9 o0H ) 0 ( oH )

2 I, - t ij 3

["OHp (x) t) foo GO{ ayz ay’ ayj (.pw ay Po a ( ay }d ydT (2'16)
Here we restrict our attention to the case where all the differential operators can be trans-

ferred by partial integration onto the Green function which vanishes on the jet at infinity. The

more general situation where the Green function is only bounded within the jet at infinity is

considered later. The resulting equation for Hp’ is

, G} QH G} QH G}
A Hp' (3, 1) = j {HTjayza% R e LT (2.17)

Next we consider the fluid in the region v,. The Navier-Stokes equation (2.5) is, of course, only
valid in the region exterior to the surface X. We therefore introduce H,, a Heaviside function
that is unity in V(7) the region within the surface X(7), and zero elsewhere. Then if X(7) is
impermeable 0H,,[07 +v; 0H, [0y, = 0. Also

[ e ko asyar = [ar [ 1K(,) 0z

© (7)

for any function K(y,7), where [ is the normal to the surface X (7) in the direction shown in
figure 1. H— Hy, is non-zero only for points in the fluid in »;, where (2.5) is valid, and a direct
repetition of the argument leading from (2.1) to (2.15), with (2.5) replacing (2.1) and H— H,
instead of H, shows that

oy s - = g )= i 5] v [ -5

%; Oy, %; 0y
(2.18)
where y’ is related to (y,7) through equation (2.4).
We multiply equation (2.12) by (H— Hy,) pi(¥,7) and integrate over all space.
- ,[02G{ 1 D2GY
=J;o (H—HV)pI{W;—E%-BIﬁ} daydT. (2.19)

The differential operators can again be transferred to the field quantity (H— Hy,) p} by integra-
tion by parts, because (H— H,,) G* vanishes at infinity together with its space-time gradient.

@ 1D, ,
0 =L G{{@—ﬁ-ﬁ#} (H-H,) p,dydr

o2 2) — ,
- f e {672| g ayz} (H-H,) p,dydr. (2.20)
We now substitute (2.18) into (2.20) and rearrange by partial integration; end point contribu-
tions are again guaranteed zero by the requirement that (H— H;,) Gf vanish as any one of the
variables tends to # infinity.

e , G 0G; (0 3\ | DGi (o aH,,) .
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Now this equation is multiplied by an arbitrary function of (, ) or even a linear operator in
(%, t), which we denote by S, and the result added to (2.17) to obtain the exact equation

, %G} e 0H,3G! , D G ;O
AHp (5,0) = [ (T 5b b= Hy) Ty~ iy o Lt oy i asyar
+<:b(x 5, (2.22)
~ e Jzlen AD,GY) .,
where  ®(x,1) = f { pz,(ﬁ ayj)+p(, oo Poatiy B =d ydr.  (2.23)

We have assumed that there is no part of the surface X (7) in the space vy(r) and that it does not
meet S(7), the surface where dH [y, is non-zero. The first two terms in equation (2.22) represent
sound generation by volume quadrupole sources, the third and fourth terms the field generated
by the force and velocity distributions on 2'(7). @(«, f) represents surface terms on §(7), whose
strength is linear in the field variable. It is well known that such linear surface sources can often
appear to be much more efficient generators of sound than they actually are — especially when
one does not know the source strength accurately enough to account properly for phase cancella-
tions. Hence, in its present form, equation (2.22) could easily lead one to make erroneously large
predictions of the acoustic field generated by the flow. We overcome this difficulty by using
equation (2.10) to rewrite v;0H[y; as — D,;H[Dr. The last term in (2.23) may be integrated by

parts to obtain
__D2GT
e f aHDlGlcl3 dr =—/>’p1waI]))1g1d3ydr.

We now introduce a function I'(y, 7) defined in v, by

Hp,*I'|or* = Hpp, D2G}/Dr2, HAI[or—>0 as |r|->o0,

so that we can write
o[ B atyar = —p, [ B atyar

= —pof z%l_{%'ljdsyd
We find, using [),-j = ([J —po) 04— ey, that

G'and I" are uniquely determined once we specify two jump conditions across (7). We therefore

oG} or
(80 ayr. 220

choose conditions that minimize the misleading linear source term @, and impose the jump

conditions
0G{[or = oI'for and 0G§/on = B0G][on (2.25)

for y on all parts of §(7) where v,, # 0, p;; # 0. Then only the viscous term remains in @ and

G y; G
== T, —— d3ydr+£& f f T L dsyd
?J f vir) 0y, 0y Y W)= V(1) Ty Oy, 0y, yar

D,Gf | 3G}
Lo ot i) e

—_— t___ t t
A fsm iz (G pGY) dSar, (2.26)

26 Vol. 288. A.
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330 A.P. DOWLING AND OTHERS

where ef = (e, &, ¢§) is the projection of the viscous stress n;¢;; onto §(7). This equation is exact
and could be modified to include surfaces in v, by the addition of the term,

T i
élgf zi( b - --aG)dZydT.
0dJ ©

1) a

This form of the aerodynamic sound equation is the result of a step that avoids the occurrence
of an apparently large linear source term in the flow by properly accounting for the embedding
of the sound sources in the region of moving fluid while at the same time preventing the occurrence
of the confusing linear surface sources. It applies to any real flow and there are no assumptions
made about the shape of the regions v, and »,. Moreover the function £ and the constants U,, ¢,,
¢, 1 and pg are to a large degree arbitrary. When U; — 0, #— 1 and ¢, — ¢, equation (2.26) reduces
to the Ffowcs Williams-Hawkings (1969) statement of Lighthill’s aerodynamic sound theory.
But in the general case the first term in equation (2.26) represents the generation of sound by the
usual Lighthill source 7;; in the exterior region v, while the second term represents the generation
of sound by a stress tensor based on relative velocity and density in the interior region »,. The
third term describes the sound produced by the action of the surface 2" and the last represents
the sound generation due to tangential viscous stresses acting across the surface §(7). At the high
Reynolds numbers which are usually of interest in aerodynamic sound problems, the latter term
should be negligible compared with the remaining inertial terms, and we have therefore succeeded
in eliminating the linear surface sources; a requisite for obtaining a good estimate of the sound
field. This result is a direct consequence of requiring that the dividing surface §(7) move with the
flow.

In order to establish the representation (2.26) we have assumed that the influence of a point
source at (#, ) does not extend to infinity; we have considered G' for which HG* decays alge-
braically for large |y, 7|. This assumption will not be true whenever (,¢) is near the jet and
can trigger a neutrally stable free mode of the vortex sheet determining G*. Waves can then
propagate along the vortex sheet without a fast decay, and even at infinity, HG' will not be
negligible. We can easily extend the analysis to deal with such cases. The details are given in
appendix A. In fact the only effect of these modes is to ensure that the vortex sheet sources vanish
at infinity.

We find

~ 5 (s B~ By Ty~ (B Ei)

02GY
(P Utdudp=cllpo=p2) 0)) g au ) Aoy dr

Oy, Dity\ DiGi by, OG;
coﬂﬂ{ (lay DT)DT TR } ydr

?E 0 + ) 438
5[ Gresy; (G- oD ey ar (2.27)

where H is the Heaviside function which is unity for points within »{, the region enclosed by the
position of the fluid surface § at 7 = — o, and zero elsewhere. Slmllarly Hy is unity within the
initial position of the surface 2.

The integrand decays as any one of the variables tends to infinity because

Gt—=0 as 7->00
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and (ﬁ" Hy) ng - (ﬁo ~ Hy,) (po U3 O — }(po—pP1) 8723‘),
Difly 8 o |y, —7->00.

D7 L 3y

When G* decays at infinity, (2.27) reduces to the previous representation (2.26).

We now simplify this expression by recognizing that the sound generated by the surface
distributions that excite the flow is usually quite distinct from the jet noise problem associ-
ated with turbulence and will at this stage be discarded, but we recognize in doing so that all
engine internal noise and any interaction of the field with diffracting surfaces is thereby lost.
The problem we are then restricted to is essentially the free turbulence problem of sound genera-
tion in the vicinity of a substantial region of uniformly moving fluid. Hence at sufficiently high
Reynolds number, the free turbulence aerodynamic sound equation becomes

002G}
Hp'(x,1) = f z,a a _ oy dr - f By{po Utdudn=lpo=p2) gy 2y dPydr (2.29)
K2 2

I;; for yiny,

h T*.={
where 9= \pTy, for yinv,

The integration is to be carried out over all four-dimensional space. Thus for high Reynolds
number flows, all linear surface sources have been eliminated.

In most real flows the turbulent sound sources will be concentrated around the high mean
velocity region. It is then reasonable to choose v;(7) so that it coincides with this region and to
neglect the source distribution in »;. Then equation (2.28) becomes

' (3,1) = f f 71, 261 g5 d’r—--—f {Po U301 — py 1) S e iy d
() 'Lgayzay’ y v‘ Po 1%21%51 1po P1 ij ay@ay’ y T
(2.29)
and the equation gives the sound field everywhere, except inside the flow itself.

T"; has a large mean value
{Po U18:1011 —ci(po — p1) 05}

on the surface § which is now deliberately positioned in the linearly disturbed fluid that surrounds
the more energetic flow in v,(7), and at any fixed y, the integrand in the first volume integral of
equation (2.28) varies enormously as the interface drifts quietly by, thereby generating the false
impression of powerful linear surface sources of the type we have been at such pains to avoid.
This possibility is ruled out if we choose to express the first integral in terms of a coordinate
system # that moves with the individual fluid particles. The transformation from the Eulerian to
Lagrangian coordinates has a Jacobian p*/p, p* being the density of the fluid particle identified
by the coordinate # at the time when the Lagrangian and Eulerian coordinates coincide; i.e. at
the particular time when g = y.

Our optimal description of the induced field is then provided by the Lagrangian form of
equation (2.29)

Hp'(x,1t) _——f ﬁl *(n) { }ai%;]d‘* dr

02G}
_ﬁf_ m{PoU 81051 = ¢3(po —p4) zj}ay . d3yd7. (2.30)
26-2
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332 A.P. DOWLING AND OTHERS

This is the field generated by a moving distribution of quadrupoles of strength density T7;/p;
each moving fluid particle is acoustically equivalent to a quadrupole whose strength per unit

mass is
vi05+ pijlp — 3(1 —ps[p) 8. (2.31)

The reciprocal Green function G* which appears in these equations is an incoming wave
solution to equations (2.11) and (2.12) which satisfies the two jump conditions (2.25) across S,
vanishes as 70, and is bounded within v, as |y|, — 7> oc0.

The function f(#, {) isarbitrary, and it is easy to see that the density fluctuation does not depend
on the choice of 4. Since, if G® denotes the solution to the boundary value problem with g = 1
and G' denotes a solution for any other value of g, it follows from equations (2.11) and (2.25)
that these solutions must be related by

G'=GY for ¥ in vy,
BGt=GD for yiny,.

Hence when y is in v;, #G* is invariant under the choice of 8, while for y in vy, G' itself possesses
this invariance. Since these are the quantities which actually appear in equation (2.28) we see
that Hp'(#,t) must be independent of #. We have only introduced this function to facilitate the
interpretation of the jump conditions (2.25). Although these jump conditions are just sufficient
to uniquely determine G', its calculation presents us with a formidable task since the surface S(7),
on which the conditions are applied, moves with the actual flow. For real turbulent flows, any
such surface will become highly irregular. Indeed it is even difficult at this stage to arrive at
a reasonable physical interpretation of G'. Fortunately, for the nearly parallel flows which are of
technological interest, it is possible to construct the reciprocal Green function and we shall now
demonstrate this to be the Green function appropriate to an instability-free (and therefore only
weakly causal) vortex sheet modelling of the flow.

3. VORTEX SHEET MODEL

Suppose now that S, the initial position of §, is a cylindrical surface doubly infinite in the
y,-direction whose generators lie parallel to the mean flow U. If the surface S(7) lies in a linearly
disturbed flow, then, in some sense, it remains close to its initial position ,, and also v;, p,; and n,
are small. We can therefore adopt the procedure used in linearized aerodynamics and ¢ transfer’
the boundary terms in equation (2.24) from $(7) to the fixed parallel surface \S,. The problem
of determining the Green function is now much more tractable. Since S is a fixed surface, we can
easily eliminate I" from the jump condition (2.25) to obtain

002G} D2Gj oG, oGy
po—&%’=ﬂp1ﬁ21 and —a;zi’=ﬂ—a71 on S, (3.1)

Moreover, there is in this problem no characteristic scale for either the time or the distance in
the y,-direction. Hence G§ and Gj can depend on ¢, 7, x,, and y, only in the combination ¢—7
and ¥, —y,, so that

Gy 3Gy Dlag__{a

a 't
or o’ Dr 5t+U15'x—1}G° (3.2)

and the derivatives of G} satisfy the same relation.
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SOUND PRODUCTION IN A MOVING STREAM 333

We now restrict our attention to the case where the observation point & is in the far field. Then
the requirement that G* represent an incoming wave in y and 7 ensures that it will represent
an outgoing wave in & and ¢ so that

G __13GAls] __ x 3GY
Ox,  Cp OT Oxy |%] ¢, Ot
D,G} 3G} Gy
Hence By =~ U=M) " = (1-M,) -,
+ +
and similarly Dﬁfl = (1-M,) %G‘,r'l )

where M, = Mx,[|x|, and M = U,/c, is the effective Mach number of the mean flow based
on the velocity Uj in v, and the speed of sound ¢, in v,. By using this relation, the boundary
conditions (3.1) can be put in the form

DieG;_ ot
1D12 o PR
— BG,, (3.3)
where B = (1= M2 pufpy

But since the final result is independent of our choice of #, we can put

1= p(1=M,)2p:[p, (3.4)

whereupon the jump conditions (3.1) become more familiar. They are in fact the usual acoustic
boundary conditions
D3 oG} 02 oG}

Ppage = Pigsa. and Gf=Gl (3.5)

of continuity of particle displacement and pressure which apply across a linearly disturbed
vortex sheet

Now let G(%,¢|y,7) be the generalized function which is an outgoing wave solution (in the
variables «, ) to the equations

0z 1202 . i) )
l_axz.'c’g % G(%,t|y,7) =0 if wisin»{ and y in »f
2 1 D2 o
ox? cthz} G(x,t|y,7) = —8(x—y,t—7) if x andy are in »{ (3.6)

and satisfies the jump conditions (3.5). In this equation v and »{® denote the fixed regions
bounded by the cylindrical surface S, and

D, 0 0

D=5t Ve

G simply represents the sound field due to an acoustic point source located in an infinite
‘instability-free’ cylindrical jet with a uniform velocity profile. It is shown in appendix B that
it is related to the reciprocal Green function, G*, by

D2 002G}
pl'D_t'léG(x: tly: T) =p0'@!(y37'lx3 t) (3-7)
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334 A.P.DOWLING AND OTHERS

for & in the radiation field in »{”, y in »{?; this is just

pi(1—M,)* G(x, 1|y, 7) = poG{(y, 7| #,1). (3.8)
Thus the Green function which appears in the acoustic analogy equation (2.30) is very nearly the
usual acoustic Green function for an infinite cylindrical jet with slug flow velocity profile and
a vortex sheet boundary discontinuity. It differs from it because it is required to satisfy a bounded-
ness and a weak causality condition rather than strict causality.

The appearance of this weakly causal Green function in (2.30) means that the information
about the turbulence propagates into the far field at a speed greater than ¢,. We believe that this
is reasonable. The representation (2.30) describes the way in which the sound field depends on
the turbulence, but it is not the simple relation between an observed sound and its ‘source’. In
an unstable jet, sound waves can cause turbulence, and then later that turbulence can become
asource of sound. Equation (2.30) must therefore describe the more complicated interdependence
of the turbulence and the sound field. It is difficult to see how the strictly causal Green function
could be used in such a representation because of problems concerned with the convergence
of the integrals. The strictly causal Green function would of course, describe the sound field of
a point source near a real vortex sheet, but it is the weakly causal Green function that is relevant
to the jet noise problem.

4. THE CIRCULAR CYLINDRICAL JET
In order to illustrate the vortex sheet analogy, we now consider a simple geometry for which
it is possible to obtain G* explicitly. We investigate a turbulent round jet of radius @, with mean
flow U in the 1-direction, emitting sound into a linearly disturbed fluid. It is convenient to
introduce cylindrical coordinates, and we write

X = (R, @,xl), y= (0-3 ¢9y1)
then from (2.30)

2 1 = Po_ P*Téjiz_gi_ 3 ___f 2 T ] 0%*GY 3
L‘OHp (x: t) P1(1 — Mr)zde{ fv, 0 a?/i ayjd n l}(10)(po U18i18j1 01(P0 pl) 311) ayi ayj )
(4.1)
0% 1 0%\
where WA Gi(y,7|%,t) = —06(x—y,t—7) for o >a
02 1 D3
{é—y-g—c—%—]j—;;} Gi(y,7|%,t) =0 for o<a (4.2)
together with the vortex sheet jump conditions
D3 0G§ 02 0G}
G} = Gi, pl'jj%z’a?;? = poé}-é—,&;l on o =a. (4.3)

However G* differs from the vortex sheet Green function found by Morgan (1975) in that it is
devoid of instabilities because

HG'~ 0(1) as |y,7|—>c0.

G' cannot therefore be strictly causal. This system of equations can be solved most simply by
taking Fourier transforms in y,, 7 and ¢. (Actually the angular dependence is expanded as a
Fourier series.) If we denote the transform of Gf by G, then

_ 2m L o
Gobmafs) = [ 7 [ Gilyrls o) exp (=illn+or +ng))dyydrdg
= == =—o


http://rsta.royalsocietypublishing.org/

AL A

'\
J= \

o
A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

A

Y o ¥

A

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

SOUND PRODUCTION IN A MOVING STREAM 335

and G{(y,7|x,t)=(—2%§ f:, ff %wél(a,k,n,w]x,t)exP{i(ky1+m+n¢)}dkdw.

o p=—

Gy(a, k,n, w|%, ) satisfies

1d( dG) («® ,, 2\  8(c-R) . .
;a;(aa;)Jr(E-k 72) G0 = = X exp (—ilkn + ot 422}, (4.4)

which has the solution

G, =

_exp{—i(kx1+wt+n¢)}{fl(ff)fz(R) for o<R (4.5)

RW(f1, f3) Si(R) fo(0) for o = R.

/1 and f;, are two Bessel functions chosen to satisfy the boundary conditions and W is their
Wronksian evaluated at R (see for example, Morse & Feshbach 1953, p. 826). The general form
of f; is f1(0) = J,(ve0) + BH{(y,0) where y3 = w?[c3— k2 G} behaves like an incoming wave
at infinity in the (y,7) coordinates so f,(0) = H{P(y,0), where the root of 7, is chosen so that
when real, y, has the sign of w. When v, is complex its imaginary part is positive so that G§ is
bounded at infinity. Both these conditions are satisfied by the Riemann sheet Imy, > 0 with
a branch cut along Im y, = 0 as shown in figure 2.

—w/c

S e e e e e e o o &)

Ficure 2. The position of the branch cuts.

We note that W( £, f2) = W(J,(YoR), H(y,R)) is 2i/nR. The Fourier transform of the second
equation in (4.2) gives

1d @)+((w+ Uyk)?

n2
l —p2
crda(o- do k

3 02) G,=0 in o<a (4.6)

G, must be finite at o = 0 and hence

Gy(0,k,n,0|%,t) = CJ,(yo), where vy = {(0+Uk)?[c3—k%}.
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The constant C can be determined by applying the jump condition (4.3) at o = 4 to obtain

pi(w+ U k)2 HD (v, R) T, (y0)
F,(w,k)

where  Fy(0,) = alpyw*yJ(ya) HP (750) - pa(0+ UiR) yoJu(va) HY (750)},

and the prime denotes differentiation with respect to the argument.
Inversion of the Fourier transform gives

Gy(o,k,n,w|%,t) = exp { —i(kx; + 0t +nP)}, (4.7)

t _ 1 & pulw+Uik)2 HP (y,R) J,(yo)
Gt - e[, E, Bk
x expi{k(y, — %) + (7 —1t) +n(¢p — D)} dk do, (4.8)

where the w-integral is to be taken along the weakly causal contour which lies above the poles
and branch cuts on the real axis in order to satisfy the condition G*— 0 as 7—>c0. We now intro-
duce 0, the angle between the distant observation point and the direction of flow, defined by
R = |#|sin0 and %, = |¥| cos6. Then H{(yR) = H"(y,sin6|x|) and for & in the far field we
can expand H{ by its asymptotic form for large arguments and write

3
H®P(yoR) ~ ( ) expi{y,sinf|x| — jam—in} if 7,sind 5 0.

Ty, sin 0|%|
Hence
Gi(y, 7|%,t) ~ (2—11'_')3." Y expi{u(r—t) +n(¢p—D—4in) —in}dw

—on=—0

2 \ip(0+Uik)2Jy(yo)
x J (msin 0|x|) L exp ity + o] Ak @)} k. (49)

For large |#|, the k-integral is in a form suitable for evaluation by the method of stationary phase.
The stationary point of A(k, w) = —ikcos@+1iy,sinf on the Riemann sheet Imy, > 0 occurs
atk = — w cos 0/cy, and the path of steepest descent is therefore a curve C in the complex £-plane
defined by —ik cos 6 +iy,sin 0 —iw[c, = —u?where uisreal on C. A sketch of the curve C'is shown
in figure 3.

We now make the usual approximation in the method of steepest descents and write

2 1p,(w+ Uik)? .
fg (m/o sin 0|x|) F, (0, k) Ju(yo) exp {iky, + || h(k, »)} dk

_ 2p0*(1-M,)*J,(y0)
T |#] F (0, — @ cos 0]c,)
(1—=M,)® cos? 0}%

a g

expi{w(|#] -y cosO)fey— i}, (4.10)

where now Yo = wsinbfc,, v = w{

and M, = U, cos 0c,.

F, (w, k) has no zeros for w and £ real, with |k|c, < |w|, because for this range of £ yJ,,(ya)[J,.(ya)
is real and the imaginary part of v HM' (y,a)[H" (y,a) is non-zero. It therefore follows that when
we deform the integration path from the real £-axis on to the contour C, the contribution from
any pole crossed over is negligible. Morgan (1975) argues that the contribution from the branch
cut integral is O(|x|~#) in which case, for & in the far field, we can neglect it giving

1—-M)2[ = 2], .
Gi(y,7|%,t) = p%fﬂx_hf—) fn=z.:.an(wa:—afng)0/co) expi{o(r—t*) +n(¢p — P —in)}dw, (4.11)
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where ¢* is the retarded time appropriate to waves travelling to & at speed ¢,,
t* = ¢t — (|%| —y, cos0)/c,.
By a similar argument we find

B,,(w) H (,0)
F,(v,—wcosbc,)

}expi{w(r—t*) +n(¢p—D—4n)}dw
(4.12)

1 [c]
Gﬁ(yﬂlx, t) = an=2__w {Jn(')’oo') +

with B, (0) = ao{py(1— M) a(vo@) Ja(va) — po7To(v08) Jalya)}.

F,(w,—wcosffc,) has no zeros for real w and so a neutrally stable mode of the vortex sheet jet
cannot be excited when « is in the far field.

AL A

A

SOCIETY

TIm &
) - —wcosh )
. " ¢o 080 /— Co Rek
) >
) 6
Cc
Ficure 3. The position of the curve of stationary phase.
When 7 —#* —asin /¢, is positive, we can evaluate G{ by closing the w-contour with a large
semi-circle in the upper half plane;
o0
< Gi= ¥ X Qexpliw;(r—t*—asinb/c))} (4.13)
n=-—ow j
where the sum is over the poles, w, in the upper half plane, and @; exp {iw;(7 — t* — asin 6/c,)} are
the residues at w;.
When the vortex sheet is unstable, and such poles do exist, G} can be non-zero for
T—t¥—asinb/cy > 0
and is therefore not strictly causal.
We define K by Kafcy = minimum (Im ;). From the form of F,,, we see that K is a function
of cos 0, M, n and the ratios ¢;/¢,, p1/Po- Numerical calculations give K = 0.8 at a Mach number
i M =2, cosb = %, p, = py and ¢; = ¢, for the symmetric mode z = 0.
0 There is a ‘precursor’ ahead of the wave front, that is at a point (#, ) such that
t* < 7—asinf/c,.

27 Vol. 288. A.
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338 A.P. DOWLING AND OTHERS

The precursor decays exponentially ahead of this front, and will in fact be negligible for
t* < 7—asin 0/c,— Kajc,. Therefore, for this example of the symmetric mode, sound will only
be heard up to a jet diameter or so ahead of the front.

We now restrict our detailed analysis to the compact case which is algebraically more straight-
forward. By ‘compact’ we mean a jet with diameter small in comparison with the acoustic
wavelength. B

From equation (4.1)

Hp'(x,1) = <oy [ VT 4= Bl U300 83— lpa 1) 8y }ay Ty (14

2 (1—
Parseval’s theorem gives
e 02G!
[T}~ Ao, U300 —citou =) 80}y o1 doyr
G, .
~ 57 ) Tu s —0) gn- (3, 0) dydo, (419

where T};(y, ») is the Fourier transform of HT"j; — Hy(p, U38,16;1 — ¢3(po — p4) 8;;) with respect to
time, and G,(y, ») is the transform of G{(y, 7). Hence (4.14) may be rewritten as

, e
Hp'(5,0) = o [ Tyl —0) g2 (0,0 dPy don (4.16)

For a compact jet Ty (¥,w) is zero unless |w|a < ¢, and we can replace Gy(y, w) in (4.16) by
G§(y, w), its low frequency asymptotic form.
Taking transforms of (4.11) we find

1— 2 o J .
Gy(y, 0) = 2l 2n2|xlz "’n_zlen(w, :‘S/SZSQ/CO)expl{——-a)t*+n(¢—@—%n)}. (4.17)

and when wa/c, < 1 we can use the expansions for Bessel functions of small argument to obtain
Gi(y, v) air |{ao ) (1=3(y0)%+...) —ay() iyo cos (¢ — @)
—,(0) 1yPo? cos 2($— B) + O(eH} ¥, (4.15)
where ¢ = wa/c, and a,(w) is the low frequency expansion of

pi(l—M,)* w?
2n2ikF, (w, —wcosO/c,)’

In fact
_ pi(1—M,)2vg
(@) = a-n(0) = 2ny™{po +p1(1 — M,)%+ O(py€?, py €% poc** Ine, p > Ine) } for n>1
pi(1—M,)*

and a(®) = 2n{2p, (1 — M,)? +a*In (y,a) (po¥* — p1(1 — M,)* ) + O(p,€% py €%}

We choose the y-axes so that y, = o' cos @, y; = o sin ¢, then

1 . .
Gi(y, ) = T {ag(0) (1 -2v* (g3 +93) -..) —ivay(0) (¥ c0s D+ Yy sin P)
—1y%ay(w) (43— y5) cos 20 + 29 gy sin 20) e, (4.19)
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and the derivatives of G§(y, w) with respect to y can easily be evaluated;

62G° w2 cos? 0 -
Tyt 0 =~ @(@) 0 e,
0*G¢ _w?cosf
, W) = o cos Da, () + O(eay) } et
W) = TR e () +Olean)} o
azGc (y’ ) = 22 {Zaz(ao(w) + ag(w) COs 2¢) -+ O(€ g, €01 }e—iwt
3 e
g = (y,0) = 22{12-oc2 sin 2@ ay(w) + O(€e2ay, €a,)} e=1t",
2 Y5 ]2

where & = {(1—M,)%c}[c? — cos? O}

Now that the derivatives of G§(y, w) have been determined we can use equation (4.16) to
estimate the sound ficld. Alternatively the sound field may be described by (4.14) with Gj(y, 7)
replaced by G§(y,7), where

1
Gi(3,7) = 55 [ 63, 0) ¢ do. (4.21)

Away from both the mean flow Mach angle and the jet axis we can neglect the second term
in the denominator of @, in comparison with the first, provided only that the mean jet density is
greater than, or of the same order as, the density of the ambient fluid. Then

02G§ _ 0*Dy; p(1-M)E
o Y " T hlNg (4.22)
where D;; is a direction factor;
D pO x2
8= = M) el

pr(1=M,)% (2 —xﬁ)} Po
D, = {1a2+ ,
2T T pet(1-M,)2 (52 py(1-M,)?

1-M,)2 (x§—x3) p
D ={-oc2+ pa( r 3 2} 0o
9 = (T M) 8 ) a1~ AL
2p0%;%; .,
~ {po+p(1—M, 2}|x|2 L#J
The w-integral in (4.21) may be evaluated to give
02G§ D;; py(1—M,)% d? .
o, T T wG p et (4.23)

We can express these time derivatives at constant y in terms of a Lagrangian time derivative at
constant # since

D p(r—1%) = (a%wi%)a(f-uw — yycos0) o)
=(1 —M)%a(r—t*), (4.24)

27-2
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340 A.P.DOWLING AND OTHERS

where D/D7 is the material time derivative, N is the ‘Mach number’ based on the local fluid
velocity and the exterior speed of sound N = v/c,, and N, is v, x,/(co| #|). From (4.23) and (4.24)

asz (y, T) — pl(l —Mr) 'Dw

9y 0y, po  4m|#|cy(1—N,) Dr

D{l

Dt t): (4.25)

and (4.14) becomes

o n Dy p*T%;, D( 1 Ds
Hp'(s,0) = g [ar | | 05 (2w ) 4

028 '
o (Po U308~ pg=p) 8) S5, (4.26)

The region v, is a constant function of # so we may integrate by parts to obtain

D ( p*T}, s
OB off 8(r— {I—NDT( . M))}d pdr. (4.27)
The 7-integral can now be evaluated
' _ DTy
Hp'(x,1) = dr| w8 (4.28)
D( 1 D/ p*Ty d3y
where "= | [ l=mr (ot tn) s

The square brackets denote that the function they enclose is to be evaluated at a retarded time 7*
satisfying
7 = 1~ {]] —cos Oy (1, ™)}y (4.29)

T
where y(y,7*) = 11+j v(n,7) d7 and the lower limit in this integral is the reference time

at which the Lagrangian and Eulerian axes coincide. We differentiate (4.29) to show

@ Xy 4 Z‘)T}
;. |wfeo T oy
ot _ 1 xdy
o 1=N|#le’

or

Hence away from the flow Mach angle the variation in retarded time across the jet may be
neglected and (4.28) is a convenient description of the noise produced by turbulence in the
vicinity of the jet. T;; is the source term found by Ffowcs Williams (1974) to be relevant in shear
layer problems and here it is multiplied by a directional factor D;, which describes the trans-
mission properties of a compact circular cylindrical jet. Dy; = pya3/p,(1 — M,)? |#|2 and Mani’s
result that the interaction of a longitudinal quadrupole with a jet flow results in a Doppler
amplification of the type (1—A,)~2(1—N,)~? is immediate, and even higher powers of the
Doppler factor accompany unsteady convection. We can use (4.28) to determine the way in
which the sound field scales with the various jet parameters.
From the pv;v; term in Tjj, we find

P07 (5, 047) ~ prME a2, (4.30)

where the bar denotes the time average. This is just Lighthill’s scaling law.
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The term in 77j; due to the density difference ¢}(p — p;) must be treated more carefully, because
although Ap = p —p, may be large near the edge of the jet, Dp/D7 is always small, and cannot
be scaled asApU;/a. Instead we expand

2 (p*(p pl)) as 1P*Ap DN, dp* 2(/_)_1)
'Dr\p(1-N) p(1=N)*Dr  (1—N,)Dr\p

The first term is the largest for small Mach numbers and we obtain

p' (%, 1) p'(%,t+7) ~ (Ap)? MSa?[|x|2. (4.31)

Alternatively we could do the scaling in the frequency space and determine the spectral charac-
teristics of the sound. The power spectral density W (x, s) is defined by

W(x,s) = fp’(x, t)p'(%,t+7) e~sUrla (U, [a) dr (4.32)

or equivalently W(x,s)8(w+0') =p' (%, 0)p (5,0 U/2na, (4.33)

where s = wa/U, is the Strouhal number. The total acoustic power is then given byf W(x,s) ds.
When (4.22) is substituted into (4.16) we find

Hp'(x,t) = -5 fl) 2]t fw T:;(y, — o) exp —iw{t— (|%] —y, cos 0) [¢,} d3y dw (4.34)

so that Hp'(x,0) = 4n|xlc f T3(y, w) exp —iw(|®| —y, cos 0) [c, d3y,

T;;(y, ) is the Fourier transform of HT;j(y,); or equivalently

WDy T};(k*, w) exp —iw|%|/c,, ‘ (4.35)

Hp'(%0) = - gra

where k* = (—w cos /¢y, 0,0) and T'j;(k*, w) is the four-dimensional Fourier transform of HT';.

From (4.33) and (4.35) we see that the pv;v; term in T7j; gives W(#,s) ~ p2?M3s%a?[|%|2. How-
ever if p, and p, are not equal, the largest contrlbutlon to T';; at low Mach number comes from
the density term, ¢3(p —p,) 0;;. For low Mach number flows

9 op 0
a,r via_yi"’_'a'%(viAp):

so that wp(y, w) = (0/c,) (v;Ap) (¥, w) and
W (%,5) ~ (Ap)? MSs%a2/|x|2. (4.36)

Near the jet axis or the mean flow Mach angle, or in the case of a very light jet, in fact whenever
p1(1—M,)2< po(va)?In (y,a), this scaling is not valid because the second term in the denominator
of ay(w) must be retained.

When the observer at & is near the axis of a jet of arbitrary density, sin@ = 0 = y,, then
a,(w) = 0 for all #, and Gf and all its derivatives are zero; no sound is heard.

In the case of a very light jet the compact limit of the Green function has a different form, and
different scaling laws are obtained. For a jet which is lighter than it is compact (by that we mean
pr < poctIne)

a_,(0) = a,(0) = ’ﬁ(—l—z;p—imz (7’70)"{1 +0(e*Ine) + 0(e™)} n > 1
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(TS ol
and %) = Srpayan (jufafey | OO e )]

for & such that a? = (1 —M,)%c3[c} — cos? 0 # 0. Then from (4.20)
PG\(y,0) _ _p(1-M,)* Eje o

- , 4.37

iy, podmlala® In(|wlefcy) (+.37)

where E}; = 2cos?0/a?, Eyy = Eyy = 1, E;; = 0 for i # j, and substitution into equation (4.16)
gives 3 , _

Hp'(3,8) = — i [ L0 =) e [ iwofe— (Js] — gy cos O)fepj] doy do,  (4.38)

~ 8n%x|a%3) In (Jo|a/c,)

B, Tyt
dr|x|aciIn (|o|a/cy)

Hp'(%,0) = exp (—iw|*|/cy). (4.39)

We can now use this expression for p’(#, w) to determine how W (#,s) depends on the various
parameters. The pvjv} term in Tj; is largest near the surface where p & p, and
M
sIn2 (sM) | |2
~ o MPa(s]]2,

W(x,s) ~

because for small M, the variation of In (sM) with M is smaller than algebraic.
However, at low Mach numbers the main contribution to the sound field comes from the

!

density term in 7'};, and scaling that term gives

(Ap)? M?a®> (Ap)® M?a?
sn? (sM) [« s[*]2

W(x,s) ~ for p; < pyM3?:In (sM) and Ms< 1.
We see that in general the sound produced by turbulence within a very light jet scales with the
second power of the Mach number, a most unexpected result which may well be relevant to the
‘excess noise’ problem. This scaling law predicts that the sound intensity is a factor (Ms)—*
larger than the usual scaling law (Ap)?2 M®s3.

For a point & on the edge of the ‘zone of relative silence’ where « is zero, i.e.

(1—M,)2c¢ = c}cos?0,

then even for a light jet the expression (4.22) for the derivatives of Gf holds and there must be
a local peak in the far field intensity of noise from a light jet flow.

5. CONCLUSIONS

We have shown that the jet noise problem may be modelled by particle attached quadrupoles
convected with the velocity of the actual fluid but positioned near a hypothetical instability free
vortex sheet. The strength of each quadrupole is Lighthill’s stress tensor per unit mass. Equation
(2.30) expresses our main results. Mani’s work has shown that this type of model agrees well with
experiment and our theory justifies Mani’s general procedure while establishing the source
characteristics needed for an exact result. The exact sources differ from and are simpler than
those used by Mani which contain spurious monopole and dipoles due to density gradient
terms. The effect of density variation on the source is shown to vanish unless the density, or the
velocity, of a moving material particle changes.
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The deliberate emphasis of ‘finiteness’ rather than ‘causality’ in our analogy results in the
shear layer’s instability waves, as they grow into turbulence, being heard as sound that builds
up as a precursor of the main turbulence driven field. Some jet flows will also support ‘neutral’
waves that travel without decay along the jet at constant speed. These might provide a means
by which distant irrelevant events in the jet’s history are retained as sound, but we show that to
be impossible, only the unsteady part of the equivalent source field is non-zero. The sound in our
exact analogy is totally uncoupled to any free waves of the basic flow.

We have examined the circular compact jet in some detail and, in addition to some previously
known features of the mean flow/acoustic interaction, for example that no sound is heard on
the jet axis (see Dash 1976), we have uncovered an interesting new aspect of the problem. When-
ever the jet is very light it can provide a wave guide in which the effects of source activity persist
for some time but eventually leak out as sound. This interaction drastically distorts the free field
characteristics of the turbulent sources and in fact results in the Reynolds stress induced waves
having an intensity that scales with only the fourth power of jet velocity rather than Lighthill’s
eighth power law for free quadrupoles. The source terms associated with density inhomogeneities
have an even lower sensitivity to jet speed variation, the intensity of their sound scaling on the
square of jet speed. We do not think this is a spurious artefact of the model and consider that it
may have some bearing on the so-called ‘excess noise’ problem. There, the noise of a real hot
Jets is known to be much less sensitive to velocity changes than the U® dependence thought to
be relevant to the ‘pure mixing’ noise of a low Mach number jet.

Our exact extension of the Lighthill theory includes mean flow acoustic interactions in a way
that is analytically tractable, and which might be useful in describing the sound produced by
real turbulent flows. We believe that in many applications our modelling will be as representative
of the real thing as numerical calculations based on less tractable laminar flow simulations of
the problem; the success of Mani’s calculations supports this belief. But we do not claim, nor
indeed do we think it to be true, that this vortex sheet model is any more correct than Lilley’s.
On the contrary, the main criticisms of that model rest on the inadequate treatment of the
instability modes and the interpretation of the right hand side of the Lilley equation as the
source. In facing that issue for the vortex sheet modelling, we have in effect also justified the pro-
cedure advocated by Lilley, and left the way open for other analogies based on different ‘mean’
velocity profiles. The relative merits of the various analogies now rest on their ease of handling,
and we suspect that our analogy will be difficult to improve upon in that regard. We certainly
do not believe this analogy to be in any sense unique, and can foresee that equally, and possibly
more, penetrating analogies can be built upon linear models of thickening shear layers where the
instability waves can remain bounded without the need for ‘precursors’. Also nonlinear anal-
ogies are obviously possible in which the same boundedness can be ensured by finite amplitude
effects. But both of these schemes are likely to be extremely difficult to deduce and eventually
handle. It will not be easy to develop them to a stage where they are as powerful as the exact
linear laminar parallel flow analogies of which ours is one member. These will have to form the
basis of aerodynamic noise theory for some time yet.

A. P. Dowling acknowledges the support of an S.R.C. Research Studentship.
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APPENDIX A

We now derive a representation for the sound field when the point source excites a neutral
stability mode of the vortex sheet model and HG" is only bounded as |y|, —7->c0.

We define a Heaviside function H, such that A is unity for points within both v, and a sphere
of large radius L, and zero elsewhere. 0H[0y, is therefore non-zero on §(7), the surface separating
v, from vy, and also on the surface of the sphere of radius L contained in v,. Equation (2.15) is
still valid but now describes the flow within a finite region. We multiply it by H%(7), where
HT is unity for |7| < T, zero elsewhere, and rearrange to give

02 0*(HTHT;;) o H 0 o0H
TEHL" — i HT 9 (gry. 22
(872 “o ) ) = =3y, @yj( b @y) Poar (H K ay,-)
,OHT\ 0HT9(Hp)
(H or ) or or (A1)
It follows from the definition of G{ given in (2.11) that
t 201
HTHp' (s, 1) = — f HTHp (y, ){a G 215%-7%’} doy dr. (A 2)
0
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We integrate this by parts exactly as before, the end-point contributions vanish because
HTHp'(y, 7) is zero as |y, 7| - 0.
HTHp' (%, 1) = f G

6'2

{62 }HTHp (y,7) ddy dr. (A 3)

o g

We then substitute equation (A 1) into (A 3) and rearrange by partial integration to obtain

Gy HOG) oG] oH
SEITE (5. ) = 7 r, OHOG) o, 3G OH
BHTHY (3,1) f {H HT, eh+ Hipey o S0 Hpy o
OHT ((Hp) ., ,aag} \
+—5;-( ) 63— Hp -g) dsydr. (A 4)

A function I'is introduced which satisfies 01'/0r = 0G§[0r on those parts on S(7) where v, # 0,
then equation (A 4) may be rewritten as

207t +
GHTHp' (s,1) = f HT {H?;, aa gy vy gf %j +5 Oarz}d3y dr
T t
+fw§—g;-{poH%F H'aaG +Gfa(Hp)}dsydr. (A 5)

The last term of this equation can be simplified, because from the definition of HT,

|7 @mmn) Ky myar = ~(K(s, T) - K3, - )}

for any function K. Far from the sources in the real flow the fluid is undisturbed and therefore
the perturbation flow parameters v, p, p" and their derivatives vanish on the surface of the sphere
of radius L or at 7 = — T for all y, and G* = 0 at 7 = T provided only that L and T are large
enough. Equation (A 5) then simplifies to

RGy  QHIGY o O oI
2 HT — V43 —ds3
3 HTHp' (%,1) f f{ i5yog TPy, 5, T Lo aTz}d ydr+Up0HaTdy]1=_T. (A 6)

The region in the interior of the jet may be treated in exactly the same way. H s defined to be
unity for points within both v, and the sphere of radius L, and zero elsewhere. We then multiply
(2.18) by HT and rearrange

(B2 -a ) ern( =) ) = 50 (ern - ) T (g, (S-S

%; Oy,

D D,H,\ DHTD
~ i () +p,pt (HT B + DEL DL (- 1) )
D, (D, H'
+ (O (-, + 0| (A7)
The definition of G (2.12) gives
HT(H—-H.) o' D} 2.9\ o1 g8
=1, (H-Hy) pi(y,7) 'D_Tz"'cl@ 1d%ydr. (A8)

The differential operators can be transferred into H(H— Hy,) p} by partial integration; contribu-
tions at infinity vanish because HZ(H— Hy,) p; is zero as |y, 7| - co.

D} 0%
0 = [ Ci{gh - gy HUH- ) i(y,m) iy (A 9)

28 Vol. 288. A.
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We substitute (A 7) into (A 9) and rearrange by partial integration, end-point contributions
are again zero because HT(H— H,) p; is zero as any one of the variables tends to + infinity.

002G} oG} (0H oH, 7DiGl  D,GiD,H,

T v 1 171 3
f " {(H 5 Tvgyay, oy, Py, (a.l/z %, ) D /Dy D }dyd

D,H D, G} D, G}
+[ 2 loipt (- 1) ) - ol - 1) - pu 1, T vy ar, (a10)

which for a large enough value of 7" may be written:
T 032G} 0G} (0H 0H, —~D3G} D1G{D1HV} s
0= |2, [ A0 T+, (ay ~%t) P B ey b ey
~D, G} DIG’r . (aH 6HV)} ]

+[f{—poH B+ (=) Hy 4061l (51— 57 o] (A 11)

This equation is multiplied by £(#, t) and the result added to (A 6) to obtain the exact equation

02G} 02G}
2 IIT = o 1
o H Hp ®, t) f f { wa a +ﬂ(H HV) Tija ia!/j
0H,, 0G} D GIDIHV s
by = B, }d ydr+ 0+, (A 12)
E)G{ G\ [ O D3GH\\ 15
where xt)—f f {”6}/( @;—a_y;)+H(°62 /J’lDz)}dydT

and

D,G} 0H OH, _ol’
vy =] [ \~tm DG s oo By 25 4 OG*U( Oy, po %L }d3y] .
a.1/1 a% or T

This equation differs from that obtained previously (equation (2.22)) only in as much as the
integration range is now finite. The additional term ¥ is due to any source terms at 7 = — T,
the effect of which lives forever when the vortex sheet resonances are excited.

We now choose G* to satisfy jump conditions across § that minimize @, and as in (2.25) we
pick G§ and G} such that ) ) )

aac; ,@aGl and aa_c;*o - %]Tf (A 13)
on all parts of §(7) where v, # 0, p,; # 0. I is defined in v; by Hp,d2I'[or? = Hpp, D2G;}/D72.
With this choice of G*, @ depends only on the viscous stress on the surface §(7) (just asin (2.26)),
but at a high Reynolds number the sound produced by this viscous term will be negligible
compared with that due to the inertial terms, and so we neglect it.

The term ¥ is actually independent of the real flow and depends only on the initial con-
ditions. We denote the initial position of the fluid surface S(7) by §, and the region contained
within S, by »{®. We then introduce H,, a Heaviside function which is unity for points within
both »{ and the large sphere of radius L, and zero elsewhere. Therefore

Hy(y) = lim H(y, ).

Similarly the starting position of the surface X(7) is denoted by X, and we introduce Hj,, the
Heaviside function which is unity within 2, and zero elsewhere.
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Then
D1 1 D101 X (aﬁo aH,,o) _ g} 3]
W= | [ (=0 BB+ Bloo— ) Hou B2+ BooGiU, (50— ) +oologr ) 9|
(A 14)
D, G} D, G 0H, oH, or
= [7 | 3 {proB S = Bloo=r2) Hon B~ B GLL (50— 52 ~ ol | iy .
(A 15)

The right hand side may be rearranged to give

AL A

T - 002G D, G} .. 0H,
—_ _ 28 8.2 _ .. 1 1Y1 Vol 33
':p - ﬂf—.’l‘foo {(HO HVO) (Po U1811831 "1(/)0 pl) 61,1) a‘% a!/j pl DT le a!/1 }d y dT'

A

SOCIETY

(A 16)
From (A 12) we finally obtain our modified vortex sheet analogy: ¢ HZHp' (%, t)
G} T _ 2Gt
= ] e gy A=) T = (B o) (00 U0 =2) 80)) gy
0H,, 3G} DIG" D, H, 0Hy,, 0H 0 , ., s
Igp’l,] ay ay ﬂ 1 ( DT Ul ayl)"l' 1,Ja a (G ﬁG )}dydT‘
(A 17)
4 The terms in (A 17) arising from ¥ conveniently ensure that the source terms decay as any one
of the variables tends to infinity because
(H—Hy) T3y~ (Hy— Hyy) (po U30:1811—c3(Po—p1) 635)
D HV 0Hy, «
and - Ul—ay—l—, as |y|, —7>c0.
When G* decays at infinity, ¥ = 0. Then (A. 17) and the previous representation, (2.26) are
entirely equivalent; either form may be used.
ArPENDIX B. THE RECIPROCAL THEOREM
When the surface is only linearly disturbed as described in §3, we can determine a simple
relation between the reciprocal Green function defined by (2.11) and (2.12) with the jump
. conditions (3.5), and the Green function defined in (3.6), when HG'—> 0 as |y, 7| - 0.
h Throughout this section y is a point within the jet, i.e. in the region »{?), and # is in the ambient
fluid v{¥. H,y(2) is a Heaviside function such that
Hy=1 for z in »Q
_ =0 for z in »{, ) (B 1)
and Hy=1-H,.
H,(%) is independent of z, because S,, the bounding surface between v{® and »{?, is a fixed
surface parallel to the z,-axis.
Now  Hy(®) G(x,t|y,7) = f Hy(2) G(z, 5]y, 7) 8(w—3, 1—s) dzds (B 2)
w
0
- —fH (2) G(z, 5|y, 7) (_:-)_2___1_@) Gi(3, 5|2, £) dz ds (B 3)
0 > > az% 6'(% 652 0\%> H
28-2
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348 A.P.DOWLING AND OTHERS
from (2.11). After integration by parts and use of equation (3.6), we obtain
+
H(#) 63, 13,7) = [0 (602, o3, 1) 32 (3518, = Gila sl ) 52 (5,513, 1) dizdss (B )
i i i

contributions at infinity vanish because G represents an outgoing, and G' an incoming wave in
the variables (2, s). Hy(x) is independent of x; and ¢, hence

2
H ( ) th G(x tly’ T) Dt]é {Ho(x) G(x: tly: T)}
0H, 0 D2
= f_o lG(Z, 5|3’, a th Go(z, slx,
D2
Dtlz G{(2, s|#, t) =, (z,sly, T)} d3zds (B 5)

by differentiating (B. 4). By applying (3.2) we can write

oD?
H(x)D G(x,t|y,7) = fa {G(z,sly, 5 DzGO(z,s|xt

D2
B =L G{ (3, s|%, 1) a—ziG(z,s|y, ) d3zds. (B 6)
We impose the condition
Hy(2) G(,5y,7) >0 as |z, |s| >0 (B7)

then an integration by parts of the last term in (B 6) gives

D2G D2 aG+
leO(x)—D'IZE'(x: tly’T) = f{G(Z,Sly, plD 2 a lx:

D20
—Gi(=,s%,1) plD—Sg-a; (%, ]y, 7)} ds, ds. (B 8)

Similarly ‘
Hy(y)Gi(y,7|#,t) = fl-_lo(z) Gi(2,s|%,t) 8(y — 2,7 —s) d32ds (B9)

_ 2
=_Pm@quﬂmM%52§Jamw,d%m (B 10)

from (3.6). '

After integration by parts this becomes
Hy(y) Gi(y,7|%,1) faH {G*(z s|%, 1) a (z s|y,7) — G(2, 5|y, 7) Gl (z s|%,t }d?'zds (B 11)

02 1 D2

because from (2.12), Hy(z) {a_z“z @Ds?

}mgﬁm 0, (B 12)

and the condition HG*-> 0 as |z,|, |s| - oo ensures that the integrated terms vanish. It can easily
be shown by differentiation of (B. 11) that

— 02GY 0% 0Gf
B(3) o g i, 0) = [{6(5519,7) pogga g (sl

X o oG
—Gi(z, s|%,t) Pogas, (2, 5|y, )} dSpds. (B 13)
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Both G and G* satisfy the jump conditions (3.5) and hence we can deduce from (B 8) and (B 13)

0? D3G
oz Gl 718 1) = prqyz (%19, 7), (B 14)

which for & in the far field reduces to the required reciprocal identity
G(y, —|%, —1) = Gi(y,7[%,1) = p1p5 (1 — M,)2 G(, 1|y, 7). (B 15)

We can now see that the two apparently different conditions we had to impose, (B 7) and that
following equation (B 12), are in fact one and the same. The latter states that Gi(y, 7|,t) >0
as |yy|, |7| > oo where y isin v, xisin ¥§®. But G 'is a function of y; and 7 only in the combin-
ation y, — x,, 7—t and so necessarily

Gi(y,7|®,8) >0 as |xy], |t| > o0,
which from (B 15) gives condition (B 7),

G(x,tly,7) >0 as |x],[¢| >c0.
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